Photo of Steven Z. Chou, Ph.D.

Steven Z. Chou, Ph.D.

Assistant Professor of Molecular Biology and Biophysics
Academic Office Location:
Molecular Biology and Biophysics
UConn Health
263 Farmington Avenue
Farmington, CT 06030-3305
Phone: 860-679-8898
Fax: 860-679-3408
Email: schou@uchc.edu
Website(s):

Lab Website

Department of Molecular Biology and Biophysics

Molecular Biology and Biochemistry Graduate Program

Our lab is part of the Department of Molecular Biology and Biophysics at UConn Health and is located on the 3rd floor of the Laboratory Building (L3080).


We are committed to discovering new knowledge in actin-based cell motility, cell division, and transmembrane signaling. Our basic research will enable scientists including ourselves to develop better therapies using protein engineering to treat, mitigate or cure musculoskeletal disorders, cardiomyopathies, blood disorders, microbial infections, developmental abnormalities, and tumors.


We are also committed to helping each lab member build a strong skill set to advance their career. To that goal, we design different research projects, provide support in fellowship/grant applications, and encourage lab trainees to attend professional conferences.


Our lab welcomes all people, regardless of gender, age, ethnicity, sexual orientation, or religion.

Education
DegreeInstitutionMajor
Ph.D.Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of SciencesBiochemistry and Molecular Biology (NMR and XRD)

Post-Graduate Training
TrainingInstitutionSpecialty
PostdoctoralLife Sciences Institute, University of Michigan, Ann ArborPostdoctoral Research Fellow, Cryo-EM and Obesity
PostdoctoralDepartment of Molecular, Cellular & Developmental Biology, Yale UniversityPostdoctoral Associate, Cryo-EM and Cytokinesis
Associate Research ScientistDepartment of Molecular, Cellular & Developmental Biology, Yale UniversityCryo-EM and Cell Motility

Our research is focused on the structural basis of the following three cellular processes in health, and protein engineering for treating related diseases:


1. Actin-Based Cell Motility
Actin participates in many cell motile events in both health (e.g., muscle contraction, cell migration, cell division, cell shape maintenance) and disease (e.g., cardiomyopathy, cancer invasion, microbial pathogenesis).
Ongoing projects: red blood cell shape maintenance; nucleation of actin filaments by formins; interactions between the actin cytoskeleton and pathogenic proteins from Listeria, Plasmodium, and Borrelia.


2. Cytokinesis
Cytokinesis, the last step of cell division, is characterized by constriction of the actin-myosin contractile ring. During the division of one mother cell into two daughter cells, mutations in the cytokinesis proteins can cause severe problems (e.g., tumor and infertility). The final goal of this research is to recapitulate this process in vitro and to provide clues to correct or remove the mutations.
Ongoing projects: assembly and regulation of contractile ring by molecular machineries; disassembly of the contractile ring by oxidases.


3. Transmembrane Signaling
This process starts with the binding of an extracellular molecule to the integral membrane receptor. The subsequent transduction of this information across the cell membrane translates the extracellular binding event to one or more intracellular signals that alter the behavior of the target cell. Mutations in the extracellular molecule, the receptor, or intracellular binding proteins can cause abnormal signal transduction, which is quite common in tumors, leukemia, and developmental defect. Structure-based engineering of extracellular proteins combined with directed evolution is proven to be effective to alter the signaling, and targeted protein degradation can be used to remove the mutated proteins.
Ongoing projects: receptors for regulation of meiosis and mitosis in mammalian and yeast cells; receptors for neuronal development.


The major methods employed in our lab are molecular cloning, protein expression (in bacterial, yeast, insect, and mammalian cells) and purification (from both cultured cells and natural sources), cryogenic electron microscopy (single-particle, helical reconstruction, and tomography), confocal fluorescence microscopy, structure-based and evolution-based protein engineering, and targeted protein degradation.

Visiting Scholars or Students
Yes. Please contact Dr. Steven Chou at schou@uchc.edu to discuss the details of your visiting plan and research program.


Postdocs
Yes. Highly motivated candidates are invited to apply for a 3-year postdoc position in our lab (with the potential to extend after the 3rd year). The successful candidate must hold a terminal degree, e.g., Ph.D. or M.D., and is expected to have strong training in one or more of the following areas: protein over-expression in insect/mammalian cells, (fission) yeast genetics, (membrane) protein biochemistry, actin cytoskeleton, and cytokinesis. Former experience in structural biology (cryo-EM/ET, crystallography, and/or NMR) is a plus. To apply, please send your documents (cover letter describing your research interests and career goals, current CV, publication list, and contact information of two to three references) to Dr. Steven Chou at schou@uchc.edu. Informal inquiries are welcomed and should be directed to the same email address listed above.


Graduate/Medical Students
Yes. Ph.D., M.D./Ph.D., or D.M.D./Ph.D. students, who are interested in our research projects and have a strong desire to pursue a career in basic and/or translational medicine, are welcome to join our lab.


Undergraduate Students
Yes. Undergrads are always welcome to join our lab and are expected to take an independent and short-term project under the guidance of the lab PI and other members.

Accepting Lab Rotation Students: Spring 2023, Summer 2023, Fall 2023, and Spring 2024



Lab rotation projects:



  • Red blood cell shape maintenance; nucleation of actin filaments by formins; interactions between the actin cytoskeleton and proteins from pathogens.

  • Assembly and regulation of contractile ring by molecular machineries; disassembly of the contractile ring by oxidases.

  • Receptors for regulation of meiosis and mitosis in mammalian cells and yeast cells; receptors for neuronal development.

Journal Articles

Title or AbstractTypeSponsor/EventDate/YearLocation
Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structure of the branch junction.PosterGordon Research Conference2022Andover, NH
High resolution structures of actin filaments labeled with pyrene on cysteine 374TalkYale University2020New Haven, CT
Sorting filament particles based on helical rise and twist improves map resolutionTalkYale University2020New Haven, CT
Polymerization and activation mechanism of actin filaments revealed by cryo-EM structures in different nucleotide statesTalkYale University2018New Haven, CT
Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotidesPosterGordon Research Conference2018Newport, RI
Cryo-EM structure of the super helix formed by von Willebrand factor N-terminal domainsTalkLife Sciences Institute, University of Michigan2015Ann Arbor, MI
Structural and biochemical insights into the substrate specificity of ubiquitin C-terminal hydrolasesTalkInstitute of Biochemistry and Cell Biology, Chinese Academy of Sciences2010Shanghai, China
Solution Structure Determination of ProteinsTalkInstitute of Organic Chemistry, Chinese Academy of Sciences2009Shanghai, China
Structural basis for the differential ubiquitin binding of the UBA domains of human c-Cbl and Cbl-bTalkSchool of Life Sciences, Fudan University2008Shanghai, China